2,105 research outputs found

    Developmental Regulation of Small-Conductance Ca²⁺-Activated K⁺ Channel Expression and Function in Rat Purkinje Neurons

    Get PDF
    Calcium transients play an important role in the early and later phases of differentiation and maturation of single neurons and neuronal networks. Small-conductance calcium-activated potassium channels of the SK type modulate membrane excitability and are important determinants of the firing properties of central neurons. Increases in the intracellular calcium concentration activate SK channels, leading to a hyperpolarization of the membrane potential, which in turn reduces the calcium inflow into the cell. This feedback mechanism is ideally suited to regulate the spatiotemporal occurrence of calcium transients. However, the role of SK channels in neuronal development has not been addressed so far. We have concentrated on the ontogenesis and function of SK channels in the developing rat cerebellum, focusing particularly on Purkinje neurons. Electrophysiological recordings combined with specific pharmacological tools have revealed for the first time the presence of an afterhyperpolarizing current (I_{AHP}) in immature Purkinje cells in rat cerebellar slices. The channel subunits underlying this current were identified as SK2 and localized by in situ hybridization and subunit-specific antibodies. Their expression level was shown to be high at birth and subsequently to decline during the first 3 weeks of postnatal life, both at the mRNA and protein levels. This developmental regulation was tightly correlated with the expression of I_{AHP} and the prominent role of SK2 channels in shaping the spontaneous firing pattern in young, but not in adult, Purkinje neurons. These results provide the first evidence of the developmental regulation and function of SK channels in central neurons

    Countries’ positions in the international global value networks: Centrality and economic performance

    Get PDF
    The international exchange of goods and services is increasingly organised along global value chains in which the various production stages are carried out at many different locations all over the world. A country can be seen as holding a central position in global trade to the extent that it is involved in a large number of economic transactions with alternative potential suppliers and has a wide access to different important markets. However, the centrality of countries’ positions in the international production of goods and services may vary according to the specific stages of the production process that countries occupy. Here we adopt a network-based perspective, and propose a novel three-faceted measure of centrality that captures countries’ distinct roles at the upstream, midstream, and downstream stages of the international production process. Findings suggest that rankings of countries based on our measures of centrality vary across production stages. While emerging and developing countries tend to secure central positions at upstream and midstream production stages, high-income countries tend to exert prevailing roles at downstream stages. Moreover, rankings based on our measures differ from alternative rankings obtained from traditional measures of market power simply reflecting aggregate trade values. This is especially the case within more traditional industries, such as Textiles and Apparel, in which small and less developed countries can play relevant roles at various stages of the production process

    Multiple solutions to a magnetic nonlinear Choquard equation

    Full text link
    We consider the stationary nonlinear magnetic Choquard equation [(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p}) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where A A\ is a real valued vector potential, VV is a real valued scalar potential,, N3N\geq3, α(0,N)\alpha\in(0,N) and 2(α/N)<p<(2Nα)/(N2)2-(\alpha/N) <p<(2N-\alpha)/(N-2). \ We assume that both AA and VV are compatible with the action of some group GG of linear isometries of RN\mathbb{R}^{N}. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx)=τ(g)u(x)   for allgG,xRN, u(gx)=\tau(g)u(x)\text{\ \ \ for all}g\in G,\text{}x\in\mathbb{R}^{N}, where τ:GS1\tau:G\rightarrow\mathbb{S}^{1} is a given group homomorphism into the unit complex numbers.Comment: To appear on ZAM

    “Exit Italy”? social and spatial (im)mobilities as conditions of protracted displacement

    Get PDF
    This article examines how the experience of protracted displacement interacts with mobility desires and practices of a diverse population of asylum-seekers, refugees and undocumented migrants in Italy. Drawing from ethnographic data collected in different Italian localities and among different nationalities, we focus on participants’ translocal connections, both as ways ‘out of limbo’ and as factors in protracted legal and socio-economic precariousness. We propose an interpretation of complex spatial mobilities to understand under what conditions spatial mobility translates into an improvement in the living conditions of migrants, producing upward socio-economic mobility, and under what conditions spatial mobility perpetuates marginality and isolation. Although translocal connections provide space for action, migrants risk being trapped in a loop of movements between different countries and different localities within Italy, without the possibility to achieve legal protection in any of these

    Band gap renormalization in photoexcited semiconductor quantum wire structures in the GW approximation

    Full text link
    We investigate the dynamical self-energy corrections of the electron-hole plasma due to electron-electron and electron-phonon interactions at the band edges of a quasi-one dimensional (1D) photoexcited electron-hole plasma. The leading-order GWGW dynamical screening approximation is used in the calculation by treating electron-electron Coulomb interaction and electron-optical phonon Fr\"{o}hlich interaction on an equal footing. We calculate the exchange-correlation induced band gap renormalization (BGR) as a function of the electron-hole plasma density and the quantum wire width. The calculated BGR shows good agreement with existing experimental results, and the BGR normalized by the effective quasi-1D excitonic Rydberg exhibits an approximate one-parameter universality.Comment: 11 pages, 3 figure

    Real time optical pressure sensing for tactile detection using gold nanocomposite material

    Get PDF
    For the first time, we propose in this work a new concept of optical tactile pressure sensing. We develop a sensor integrating an optical tapered fiber force sensor based on electromagnetic (EM) coupling effect. The sensor consists of a tapered multimode Si fiber which couples the EM field coming from a broad band lamp source with the flexible gold/PDMS nanocomposite material (GNM). PDMS polymer film was used since it is suitable for the generation of gold nanoparticles starting from gold precursors and consecutively is suitable for light coupling: the formed gold nanoparticles increase the effective refractive index of the PDMS and support the EM coupling with the tapered region. By applying different weights that can be translated to pressure forces to the sensor, we experimentally observe in real time the intensity reduction of the transmittivity response at the output of the fiber sensor. This effect is most likely due to displacement of gold nanoparticles near the tapered region during the pressure application

    An observing system for the collection of fishery and oceanographic data

    Get PDF
    Fishery Observing System (FOS) was developed as a first and basic step towards fish stock abundance nowcasting/forecasting within the framework of the EU research program Mediterranean Forecasting System: Toward an Environmental Prediction (MFSTEP). The study of the relationship between abundance and environmental parameters also represents a crucial point towards forecasting. Eight fishing vessels were progressively equipped with FOS instrumentation to collect fishery and oceanographic data. The vessels belonged to different harbours of the Central and Northern Adriatic Sea. For this pilot application, anchovy (&lt;I&gt;Engraulis encrasicolus&lt;/I&gt;, L.) was chosen as the target species. Geo-referenced catch data, associated with in-situ temperature and depth, were the FOS products but other parameters were associated with catch data as well. MFSTEP numerical circulation models provide many of these data. In particular, salinity was extracted from re-analysis data of numerical circulation models. Satellite-derived sea surface temperature (SST) and chlorophyll were also used as independent variables. Catch and effort data were used to estimate an abundance index (CPUE &amp;ndash; Catch per Unit of Effort). Considering that catch records were gathered by different fishing vessels with different technical characteristics and operating on different fish densities, a standardized value of CPUE was calculated. A spatial and temporal average CPUE map was obtained together with a monthly mean time series in order to characterise the variability of anchovy abundance during the period of observation (October 2003&amp;ndash;August 2005). In order to study the relationship between abundance and oceanographic parameters, Generalized Additive Models (GAM) were used. Preliminary results revealed a complex scenario: the southern sector of the domain is characterised by a stronger relationship than the central and northern sector where the interactions between the environment and the anchovy distribution are hidden by a higher percentage of variability within the system which is still unexplained. &lt;br&gt;&lt;br&gt; GAM analysis showed that increasing the number of explanatory variables also increased the portion of variance explained by the model. Data exchange and interdisciplinary efforts will therefore be crucial for the success of this research activity

    Size, Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair Distribution Functions: A Comparative Study of γ-Fe2O3 Nanosized Spheres and Tetrapods

    Get PDF
    Due to their limited length of structural coherence nanocrystalline materials show very diffuse powder X-ray diffraction patterns that are difficult to interpret unambiguously. We demonstrate that a combination of high-energy X-ray powder diffraction and atomic pair distribution function analysis can be used to both assess the geometry (i.e., size and shape) and determine the internal atomic ordering of nanocrystalline materials in a straightforward way. As an example we consider cubic γ-Fe2O3 nanosized crystals shaped as spheres and tetrapods

    In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity.

    Get PDF
    Semiconductor nanocrystals, or Quantum Dots (QDs), have gained considerable attention due to their unique size-dependent optical and electronic properties that make them attractive for a wide range of applications, including biology and nanomedicine. Their widespread use, however, poses urgent questions about their potential toxicity, especially because of their heavy metal composition that could cause harmful effects to human health and environment. In this work, we evaluated in vivo the long-term toxicity of CdSe-ZnS QDs with different surface coatings, probing oral administration in the model system Drosophila melanogaster. In particular, we found that all the differently coated QDs significantly affect the lifespan of treated Drosophila populations and induce a marked increase in reactive oxygen species (ROS) levels. Furthermore, we observed that these QDs induce severe genotoxic effects and increased rate of apoptosis in Drosophila haemocytes. These toxic effects were found to be mainly related to the in vivo degradation of QDs with consequent release of Cd(2+) ions, while the coating of QDs can modulate their bioaccumulation in the organism, partly decreasing their overall toxicity

    Physical assessment of toxicology at nanoscale: nano dose-metrics and toxicity factor

    Get PDF
    In this work, we propose a systematic and reproducible evaluation of nanoparticles (NPs) toxicology in living systems, based on a physical assessment and quantification of the toxic effects of NPs by the experimental determination of the key parameter affecting the toxicity outcome (i.e., the number of NPs) and of the NPs "toxicity factor". Such a strategy was applied to a well determined scenario, i.e., the ingestion of citrate-capped gold NPs (AuNPs) of different sizes by the model system Drosophila melanogaster. Using these AuNPs as a reference toxicity standard, we were able to define different regions in the multiparametric space of toxicity, enabling the classification of the toxic levels of other nanomaterials, such as quantum dots and pegylated AuNPs. This approach may pave the way to a systematic classification of nanomaterials, leading to important developments in risk assessment and regulatory approval, as well as in a wide range of nanomedicine applications
    corecore